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Asymmetric �ows in planar symmetric channels with large
expansion ratio
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SUMMARY

A continuation method has been used with a �nite element grid and a geometric perturbation to com-
pute two successive symmetry breaking �ow transitions with increasing Reynolds number in �ow of
generalized Newtonian �uids through a sudden planar expansion. With an expansion ratio of 16, the
onset Reynolds number is particularly sensitive to small geometric asymmetry and the critical Reynolds
numbers for the two successive �ow transitions are found to be very close. These transitions are delayed
to higher onset Reynolds numbers by increasing the degree of pseudoplasticity. This trend is observed
experimentally as well in this work and may be attributed to the competing e�ects of shear thinning
and inertia on the size of the corner vortex before the symmetry breaking �ow transition. After the
second transition with an expansion ratio of 16, the two large staggered vortices on opposite walls
occupy most of the transverse dimension so that the core �ow between the vortices appears as a thin
jet oscillating along the �ow direction. This is more pronounced for the pseudoplastic liquid. After the
second transition, the degree of �ow asymmetry at a given location downstream of the expansion plane
is larger for the pseudoplastic liquid than for the Newtonian liquid at comparable Reynolds numbers.
The last feature is also evident in the experimentally observed velocity pro�les. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The onset of asymmetric �ow patterns in laminar, incompressible �ow of Newtonian �uids
above a critical Reynolds number through a sudden, planar symmetric expansion is well doc-
umented [1–8] in terms of experimental observations as well as computations. The geometry
and notation are laid out in Figure 1; the expansion ratio � refers to the ratio of downstream
channel height H to the upstream channel height h, while the aspect ratio refers to the ratio
of channel width to channel height in the downstream section. The Reynolds number is based
on the mean inlet velocity Uav and the half height of the upstream channel:

Re=(h=2)�Uav=� (1)
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Figure 1. Schematic of a plane sudden expansion.

where � and � denote the density and viscosity of the �uid respectively. For comparison
with other work, it is noted that the mean inlet velocity is 2=3 of the maximum inlet veloc-
ity for plane Poiseuille �ow. The critical Reynolds number is not very large and decreases
with increasing expansion ratio and with increasing aspect ratio of the channel. For example,
Cherdron et al. [1] have observed that with a channel aspect ratio downstream of 8, the
critical Reynolds number (as de�ned above) drops from 62 for a 1:2 expansion to about 27
for a 1:3 expansion.
The �ow remains steady and two-dimensional after the onset of asymmetry. Right after the

onset, the asymmetric �ow is associated with a larger corner vortex adjacent to one of the
walls; at higher Re, three vortices appear with two along one wall and one along the other
wall. The results of analysis by Alleborn et al. [4] and by Shapira et al. [6] con�rm that the
asymmetric steady states are stable and that the �ow bifurcates from a stable symmetric steady
state solution to two stable, asymmetric steady state solutions with the larger vortex near either
wall. Increasing the Reynolds number beyond the critical value leads to progressively more
asymmetric �ow patterns as observed by Cherdron et al. [1] with laser Doppler anemometry
in a 1:2 expansion. Thus, the �ow bifurcation is supercritical. Furthermore, the asymmetry
persisted over greater �ow lengths as well. For example, at Reynolds numbers just above
the critical value, the symmetry of the velocity pro�le was restored at a downstream location
x=H =16; but at a Reynolds number of twice the critical value – still before any further �ow
transition, the asymmetry persisted over greater �ow lengths. At higher Reynolds numbers,
a second transition leading to three vortices in a two-dimensional, steady velocity �eld has
been reported by Durst et al. [3], Fearn et al. [5], etc. After the second �ow transition,
the positioning of the three vortices and their sizes along both the �ow direction and the
transverse direction, lead to a core �ow that oscillates to di�erent extents. The multiplicity
of steady state solutions with Newtonian �uids is a consequence of the nonlinearity of the
equations of motion at nonzero Reynolds numbers. The present paper explores the e�ect of
�uid nonlinearity on the asymmetric �ow patterns obtained in a symmetric, planar expansion,
with both computations and experiment.
Computations of asymmetric �ow �elds in Newtonian �uids �owing through a planar ex-

pansion with a single inlet have been carried out with a variety of perturbations [3–8] from
the basic symmetric two-dimensional steady state. Durst and coworkers [3; 4] perturbed the
inlet velocity pro�le. Fearn et al. [5] investigated the e�ect of perturbations in the geometry
of the channel and concluded that a small vertical shift of the downstream grid with respect to
the inlet led to predictions of a continuous rise in �ow asymmetry with increasing Reynolds
number. Shapira et al. [6] point out that in order to obtain an asymmetric solution, it was

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:945–962



ASYMMETRIC FLOWS IN PLANAR SYMMETRIC CHANNELS 947

necessary to start with an asymmetric initial �ow �eld. Their linear stability analysis also
con�rmed that the symmetric solution loses stability above a critical Reynolds number that
corresponded to the bifurcation point. Teschauer [7] introduced slight asymmetry in the up-
stream channel to compute the bifurcated branch of the solution for expansion ratios ranging
from 1.5 to 3. The results of Shapira et al. [6] and Teschauer [7] have recently been con�rmed
by the work of Drikakis [8]. Drikakis has computed bifurcation curves with several numerical
schemes based on a �nite volume approach for expansion ratios up to 6 and predicted critical
Reynolds numbers of 72 and 27 respectively for expansion ratios of 2 and 3.
Other researchers [9; 10] have carried out computations on expansions with multiple inlets

and predicted a wide variety of �ow transitions. Foumeny et al. [9] employed the CFD code
FLUENT to predict the degree of �ow asymmetry successfully for a single inlet channel
with a 1:3 expansion and then predicted that the transition to asymmetric �ows occurs at
lower Reynolds numbers in multiple inlet channels. Above this critical value, the degree of
asymmetry increases gradually over a much larger range of Reynolds numbers than in the
case of the single inlet channel. Goodwin and Schowalter [10] used a continuation approach
coupled with an asymmetric perturbation of the �ow rates in the two inlets. The �ow �elds at
the lower Reynolds numbers were used as initial iterates for computations at higher Reynolds
numbers. At su�ciently high Reynolds numbers, the �ow was re-balanced between the two
inlets and the same continuation approach was used with progressively decreasing Reynolds
numbers.
The object of the present paper is to examine the details of the asymmetric �ow patterns

obtained in steady �ow of incompressible shear thinning �uids through planar expansions. This
is done with a large expansion ratio of 16 because the �ow transitions occur at particularly low
Reynolds numbers with large expansion ratios. A continuation procedure that is started with a
geometric perturbation has been used to compute the asymmetric velocity �elds. Experimental
measurements of the velocity �elds in a 1:16 expansion were obtained by laser Doppler
velocimetry with Newtonian and non-Newtonian model �uids.

2. GOVERNING EQUATIONS

Steady, two-dimensional, isothermal �ow of an incompressible, power law �uid through an
abrupt planar expansion (see Figure 1) without gravity in the plane of �ow is described by
the following equations
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where Ux and Uy are the axial and transverse components of velocity, � is the deviatoric stress
tensor, �̇ is the strain rate tensor, II� is the second invariant of the strain rate tensor, p is the
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pressure and � is the �uid density. The velocities are scaled with the maximum velocity in
the inlet channel while x is scaled with the upstream channel height h and y is scaled with
the half height of the larger channel.

U =
Ux
Umax

; V =
Uy
Umax

; X =
x
h
; Y =

y
H=2

(6)

The domain of the problem is −l1¡X¡l2 and −1¡Y¡1. l1 and l2 were taken to be 5 and
65 step heights respectively. The step height in dimensionless terms is (�−1)=�. Reducing the
values of l1 and l2 by 50 per cent changed the solution only by 0.01 per cent. The boundary
conditions written in terms of these scaled variables are as follows

U
(
X;±1

�

)
= V

(
X;±1

�

)
=0 for − l1¡X¡0 (7)

U (0; Y ) = 0 for ± 1
�
6Y6+1 (8)

U (X;±1) = V (X;±1)=0 for 0¡X¡l2 (9)

U (−l1; Y ) = 1− Y 1+1=n; V (−l1; Y )=0 (10)

The Reynolds number Re∗ is rede�ned for the power law �uid as follows

Re∗=
(h=2)nU 2−n

av �
K[(2 + 1=n)]n−1

(11)

3. NUMERICAL SCHEME

These equations were solved by �nite element calculations with a CFD code FIDAP (Fluent,
Inc.). A continuation method coupled with an initial geometric perturbation was used to solve
for the asymmetric �ow �elds. The mesh was graded �nely in all the corners and was less
dense away from the corners. Figure 2 shows the variation of the grid density in the channel.
In the axial direction (i.e., along the X axis), the mesh density was greatest close to the X =0
plane. In the transverse direction, the mesh was more dense near both the 90◦ corners (Y =±1)
and the 270◦ corners (Y =±1=�) and was less dense in between. Nine node, isoparametric
quadrilateral elements were used in the computations. The velocity �eld was represented
in terms of bi-quadratic interpolating functions while the pressure was represented in terms
of linear shape functions. The Newton–Raphson method was used to solve the algebraic
equations for nodal values. The iteration was terminated when the following tolerances were
met by the velocity change between iterations and the residual, with the root mean square
norm

‖Vi − Vi−1‖=‖Vi−1‖¡10−6; ‖Ri‖=‖Ri−1‖¡10−6 (12)

The perturbation–continuation method used in this work is described in Figure 3. Figure 3(a)
describes the domain perturbation while Figure 3(b) illustrates the progress of the coupled
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Figure 2. Illustration of graded mesh used for calculations.

Figure 3. The continuation approach with an initial geometric perturbation.
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perturbation–continuation method. An asymmetric perturbation is introduced in the geometry
of the con�guration by shortening one of the steps from JH to IH. This resulted in IH being
about 2 to 5 per cent shorter than the step ON. The Stokes solution was then computed for
this asymmetric channel. Using the Stokes solution as the initial iterate for the next run, the
equations of motion were solved for a higher Reynolds number. For every subsequent Re, the
result of the previous computation was used as the initial guess. This procedure was continued
until point b, where the degree of asymmetry in the �ow is much greater than that in the
geometry. At this point, the computational grid was made symmetric and the solution was then
computed for the symmetric domain S using the results at point b for domain A as the initial
iterate. Subsequently the continuation method was repeated on the symmetrical grid with the
Reynolds number now being reduced gradually from point c to e. At point d, the bifurcation
point (or the critical Reynolds number) was crossed over, below which the �ow was essentially
symmetric. The increment in Re ranged from 0.25 to 2, depending on the expansion ratio
being considered. The �nal solution for the symmetric channel was independent of the extent
of initial grid perturbation as discussed in the sections on results. When the continuation is
carried out to higher Reynolds numbers than at c or c′ on a symmetric grid, a second �ow
transition is obtained.

4. RESULTS AND DISCUSSION

Validation of the perturbation–continuation approach

The accuracy of the continuous-perturbation approach is demonstrated by comparing our re-
sults with existing computational results for Newtonian �ow through a 1:3 planar expansion.
The degree of asymmetry in the �ow is represented on bifurcation diagrams here by the dif-
ference in the reattachment lengths on the two walls, normalized by the step height. Other
measures that could have been used are the di�erence in the wall shear stresses, the center-
line normal velocity component or the shear rate in the center of the channel. The reattach-
ment lengths were evaluated as follows: the sign of the axial velocity was monitored along
the nodal layer closest to the walls and two successive nodes with negative and positive
u-velocity were identi�ed. A simple linear interpolation then yielded the reattachment length,
which is denoted by Lv after dividing by the step height. Figure 4 demonstrates the three
branches of the bifurcation curve resulting from the perturbation–continuation approach for a
symmetric channel with expansion ratio of 3. Up to Re=27, the symmetric solution is the
only steady state (i.e. the di�erence in the reattachment lengths is zero); this is consistent
with experiments. At Re greater than 27, the vortex lengths become unequal. The degree of
asymmetry increases with increasing Reynolds number. Either of the asymmetric steady states
represented by branches 2 and 3 may be followed at Re¿27. Figure 4 also reveals that a
small degree of asymmetry in the geometry hastens the �ow transition considerably changing
the critical Reynolds number to less than 20. The onset Reynolds number of 27 for Newtonian
�ow through a 1:3 planar expansion predicted with the perturbation–continuation approach of
this work is in very close agreement with the computed results of Fearn et al. [5]. It might
be noted here that the Reynolds number de�ned by Drikakis [8] is three times the Reynolds
number de�ned here. In the following sections we present new results for a 1:16 expansion
describing the e�ect of shear thinning on the asymmetric �ow patterns.
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Figure 4. Demonstration of the perturbation–continuation approach for Newtonian �ow
through a 1:3 planar expansion.

Predicted �ow transitions in a 1:16 expansion

Computations for the 1:16 channel are more taxing because of the more severe corner singu-
larity and the denser mesh grading required close to the corners. The e�ect of grid resolution
on the outcome of our calculations was investigated for the expansion ratio of 16 with two
di�erent grids – G2 and G3 having 5871 and 11431 nodes respectively. The bifurcation di-
agram for a Newtonian liquid in the 1:16 expansion is presented in Figure 5 along with a
comparison of the performance of grids G2 and G3. The results from G2 and G3 were nearly
identical. Our computations for a Newtonian liquid �owing through a 1:16 planar channel
predict a critical Reynolds number of 6.3.
Computations for shear thinning liquids were carried out with parameters given in Table I.

Here � is the shear viscosity, �̇ is the shear rate and k and n are rheological constants called
the consistency index and the shear-thinning index respectively. The critical Re∗ for n=0:7
in a 1:16 channel was computed to be 18.5. Shear thinning, therefore, delayed the onset of
asymmetry. The bifurcation curve for n=0:7 is shown in Figure 6. The �ow �eld is symmetric
up to a critical Re∗ of 18.5. As the Reynolds number is increased above this critical value,
the di�erence in reattachment lengths increases to around 3 at Re∗=35. With a greater extent
of shear thinning (n=0:5), bifurcation was predicted at an even higher Reynolds number of
around 27.5, as shown on Figure 7. This arises from the competing e�ects of shear thinning
and inertia on the size of the corner vortex before the symmetry breaking �ow transition. While
the reattachment length in a 1:16 expansion computed here and checked with experiment for a
Newtonian liquid follows the relation Lv=0:425+0:18Re, the corresponding relation checked
with experiment for the P1 solution is found to be Lv=0:22 + 0:07Re∗. In the case of shear
thinning �uids, the slower �uid in the corner vortex has a higher viscosity than the �uid

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:945–962



952 S. MISHRA AND K. JAYARAMAN

Figure 5. Bifurcation curve for Newtonian �ow in a 1:16 expansion with the results of mesh re�nement.

Table I. Parameters used in the viscosity model.

Designation n K (Pa− sn)
P1 0.7 7.82
P2 0.5 77.46

outside the vortex and this leads to smaller corner vortices for the same Reynolds number
than with Newtonian �uids—cf. Giaquinta and Hung [11]. This competition between inertia
and shear thinning leads to a higher onset Reynolds number for �ow asymmetry in abrupt
planar expansions.
It is instructive to examine the sensitivity of the asymmetry in the �ow pattern to small

amounts of geometrical asymmetry in the 1:16 expansion. Grid asymmetry is de�ned by the
expression 100(�H)=(H=2) where H is the total gap height of the larger channel and �H is
the reduction in the step height on one side. This parameter has been varied from 0 to 3.1
per cent to obtain the bifurcation curves presented in Figure 8 for a Newtonian �uid and
in Figure 9 for a shear thinning �uid with n=0:7. Only the positive branch of the bifurca-
tion curve is shown in these �gures for clarity. The departure of the asymmetric grid curves
from the result for symmetric expansions is noticeable for the Newtonian �uid at a Reynolds
number of 4 compared to the critical Reynolds number of 6.3 for the symmetric geometry.
This departure is evident in Figure 9 too at Reynolds numbers much lower than the crit-
ical Reynolds number for the symmetric geometry. These �gures show that the departure
of the curves from the result for symmetric expansions is signi�cant for a small amount
of geometric asymmetry with both �uids and is more pronounced with the shear thinning
�uid.
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Figure 6. Bifurcation curve for the shear thinning liquid P1 (n=0:7) in a 1:16 expansion.

Figure 7. Bifurcation curve for a shear thinning liquid with n=0:5 in a 1:16 expansion.

The streamlines showing the e�ect of increasing Reynolds numbers on the �ow patterns
for a Newtonian �uid in a 1:16 expansion are shown in Figure 10(a) through (d). The corner
vortices for the large expansion ratios �ll up most of the transverse length of the downstream

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:945–962



954 S. MISHRA AND K. JAYARAMAN

Figure 8. E�ect of geometrical asymmetry on Newtonian �ow bifurcation in a 1:16 expansion.

Figure 9. E�ect of geometrical asymmetry on pseudoplastic �ow bifurcation
in a 1:16 expansion (n=0:7).

channel close to the expansion plane, resulting in a thinner core between the recirculation
zones. The second �ow transition resulting in three vortices was detected at around Re=13.
The two large vortices are staggered on opposite walls as shown in Figure 10(d); either one
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Figure 10. Computed �ow patterns at di�erent Reynolds numbers for a Newtonian liquid in a 1:16
expansion. (a) Re=6 (b) Re=8 (c) Re=14 and (d) Re=24.

of these vortices occupies most of the gap exacerbating the spatial oscillation of the core
�ow. The two distinct transitions appear at a much closer Re interval than in channels with
a smaller expansion ratio. This trend is consistent with the results of stability calculations by
Alleborn et al. [4] for an expansion ratio of 1000.
The types of �ow transitions predicted for the shear thinning liquid are similar to the ones

predicted for the Newtonian liquid. Figures 11(a) through (d) depict the �ow patterns for a
shear thinning solution (P1) �owing through the 1:16 expansion. At Re∗=18, the two corner
vortices are of equal lengths. Figure 11(b) shows that at Re∗=20, the reattachment lengths
are unequal and the di�erence in the reattachment length increases at higher Reynolds num-
bers (seen in Figure 11(c)). Once again, the vortices in high expansion ratio channels grow
in the transverse direction, making the core �ow meander signi�cantly. At high Reynolds
numbers, a thin jet of liquid in the core is seen to move toward one wall and then toward
the other. At around Re∗=44, the second �ow transition is detected, wherein three vor-
tices coexist in the channel. The larger vortex in Figure 11(d) at the onset of the second
transition is considerably larger than the corresponding vortex for the Newtonian liquid in
Figure 10(c).
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Figure 11. Computed �ow patterns at di�erent Reynolds numbers with the shear thinning liquid P1 in
a 1:16 channel. (a) Re∗=18 (b) Re∗=20 (c) Re∗=25 and (d) Re∗=44.

The spatial oscillation of the core jet can be seen from a comparison of velocity pro�les
computed after the onset of the asymmetry. The velocity pro�les computed for di�erent axial
locations at Re=25:3 for a Newtonian liquid in a 1:16 expansion are presented in Figure 12.
These velocity pro�les correspond to the streamlines shown in Figure 10(d) (Re=24). At
X =5, two recirculation regions corresponding to the two corner vortices are seen. At the
other two axial locations, X =30, and X =60, only one recirculation region is detected – but
near opposite walls. At X =5, the positive peak of the velocity is o�set by only 0.05 units
along the y-coordinate. At X =30, the peak is o�set by 0.6 units on the same side of the
centerline. But at X =60, the peak is o�set by −0:6 units – appearing on the other side of
the centerline. The peak velocity itself is attenuated with distance as expected, with restoration
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Figure 12. Computed velocity pro�les with a Newtonian liquid at di�erent axial locations
in a 1:16 expansion for Re=25:3.

Figure 13. Computed velocity pro�les of the shear thinning liquid P1 at Re∗=44:3.

of symmetry far downstream. The velocity pro�les for the shear thinning liquid (n=0:7) at
di�erent axial locations with Re∗=44:3 after the onset of the second �ow transition, are
presented in Figure 13 (also see Figure 11(d)). In this set, two recirculation regions are
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Figure 14. (fRe) vs Reynolds number for two di�erent liquids (n=1 and n=0:7): Note the increase
after a break at the critical Reynolds number.

present at X =5 and one at X =30, but at X =45, there is no recirculating region. This is
consistent with the third vortex being much smaller in Figure 11(d) for the shear thinning
liquid. At X =5, the velocity peaks at around Y =0:05. Further downstream at X =30 and
45, the velocity peaks at Y =0:5 and −0:5 units respectively, on opposite sides.

Pressure drop and �ow resistance

The pressure drop in the upstream and downstream sections to and from the plane of expansion
may be combined into a �ow resistance as follows

fRe=2Re
[
H ((−�P)=�U 2

av)d + h((−�P)=�U 2
av)u

l1 + l2

]

This quantity has been evaluated for the Newtonian liquid and the shear thinning liquid
with n=0:7 through a 1:16 expansion and plotted in Figure 14. A break is seen after the
corresponding onset Reynolds number on either curve, where the �ow resistance goes up
before starting another decline. The curve of fRe for the shear thinning liquid is higher
because the extent of pressure recovery is lower for the shear thinning liquid.

Experimental

A transparent �ow cell was constructed with inserts placed in a gap between two large plates
such that the upstream gap h=2:54 mm (or 0.1 in.) and the downstream gap H =40:6 mm
(or 1.6 in.). The channel was 16 in. wide both upstream and downstream so that the aspect
ratio of the downstream channel was 10. The total length of the plane channel was 15 in.
with the plane of expansion at 6 in. from the inlet as shown in Figure 15. Two rectangular
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Figure 15. Test channel: schematic and dimensions.

Figure 16. Shear viscosity curves of two shear thinning liquids P1 and P2.

inserts of 19:05mm (or 0.75 in.) thickness were used to provide an upstream gap of 2:54mm
(or 0.1 in.). The inserted plates were specially ordered Plexiglass sections with less than
1 per cent variation in their thickness. This could lead to variations of up to 10 per cent in the
upstream channel gap; the actual variation in the expansion ratio was under
5 per cent.
Velocity pro�les before and after the �ow transition were obtained in the downstream sec-

tion of the transparent 1:16 planar expansion by laser Doppler velocimetry with a Newtonian
liquid and the inelastic, shear thinning �uid P1. Flow at the entry of the smaller channel was
straightened with a distributor plate. The model �uids were tested at 25◦C in a Rheometrics
RFS 8400 rheometer with a cone and plate �xture (5 cm diameter and 0.2 rad. cone angle).
The Newtonian �uid was a glycerol=water mixture. The steady shear viscosity curves for
two aqueous solutions of hydroxypropyl cellulose ether labeled P1 and P2 are presented in
Figure 16; P1 has a power law index of 0.7 above a shear rate of 10s−1 while P2 has a power
law index of 0.5. Characteristic relaxation times for P1 and P2 were determined from their
dynamic modulus curves presented in Figure 17. Evaluation of the Deborah number con�rms
that P1 is inelastic under the �ow conditions of this study.
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Figure 17. Dynamic moduli for the solutions P1 and P2.

With both �uids, asymmetric �ow patterns were observed at Re or Re∗=2:5. This value
is considerably lower than the computed onset Reynolds numbers; the lower onset values can
be attributed to geometric asymmetry in the experimental apparatus, which arises from the
fact that the upstream channel gap dimension could be controlled only to within 5 per cent.
The experimental onset value for the P1 solution (Re∗c =1:8) is greater than that for the
Newtonian �uid (Rec=0:8) like the computed values but the experimental values are closer.
The sensitivity to geometric asymmetry is greater for the shear thinning �uid as seen in
Figures 8 and 9. Experimentally measured velocity pro�les at three axial locations in the
downstream channel for the Newtonian liquid and for the shear thinning liquid P1, both at
Re=2:5 are presented in Figures 18 and 19 respectively. The second �ow transition was
so close to the �rst transition that we present the velocity pro�les only after the second
transition. Several observations can be made from these �gures. The larger corner vortex is
clearly smaller with the shear thinning liquid than with the Newtonian liquid. The asymmetric
velocity pro�le is evident very close to the plane of expansion for the Newtonian liquid and
farther downstream (at X =8), the pro�le is clearly asymmetric but the recirculation region
is barely perceptible and by X =15, the pro�le is symmetric. In contrast, the asymmetry
becomes prominent farther downstream (at X =8) and is evident to the same extent at X =16
with the shear thinning liquid P1. While the asymmetry persists, there is no recirculating
region at X =16 with the shear thinning liquid. Comparison of the velocity pro�les for the
two liquids at X =8 also reveals that the shear rate at the center of the downstream channel
is far greater for the shear thinning �uid. Thus the asymmetry develops more gradually in
the case of the shear thinning liquid and the vortex sizes are smaller. While comparing these
pro�les with those in Figures 12 and 13, we should note that the Reynolds numbers are quite
di�erent.
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Figure 18. Experimental velocity pro�les with a Newtonian model �uid in a 1:16 expansion after the
second �ow transition at Re=2:5.

Figure 19. Experimental velocity pro�les with the shear thinning liquid P1 in a 1:16 expansion after
the second �ow transition at Re∗=2:5.

CONCLUSIONS

New results have been obtained with a continuation-domain perturbation method for two
successive symmetry breaking �ow transitions with increasing Reynolds number in �ow of
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generalized Newtonian �uids through a sudden planar expansion with an expansion ratio of
16. The accuracy of this method has been demonstrated by matching results obtained here for
a Newtonian �uid through a 1:3 expansion with results in the literature. With an expansion
ratio of 16, the onset Reynolds numbers for the two successive �ow transitions are found to be
close and the onset Reynolds number is particularly sensitive to small geometric perturbations,
decreasing with increasing extent of geometric perturbation. After the second transition, the
two large staggered vortices on opposite walls occupy most of the transverse dimension so that
the core �ow between the vortices appears as a thin jet oscillating along the �ow direction. As
the extent of shear thinning is increased (lower n), the onset Reynolds number is increased;
this is consistent with the competing e�ects of inertia and shear thinning on the vortex size
even before the symmetry breaking �ow transition. But the degree of asymmetry of the �ow
decays more slowly along the �ow direction with the shear thinning �uid. This feature is
also evident in the experimentally observed velocity pro�les downstream of the expansion
plane for the pseudoplastic �uid. The predicted extent of pressure recovery is lower for shear
thinning liquids.
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